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Abstract— The prediction of protein-protein interaction is one 

of the fundamental problems in bioinformatics. A novel 

algorithm called STRIKE has shown to achieve good 

performance in protein-protein interaction prediction. It 

assumes that proteins interact if they contain similar substrings 

of amino acids. In this paper, we developed a parallel STRIKE 

algorithm and we implemented our proposal on Cluster system. 

Using short protein sequence sets, the overall execution time of a 

parallel implementation of this bioinformatics algorithm was 

decreased to about 5 times when increasing number of nodes 

from one compute node to 6 parallel nodes. Key optimizations to 

the implementation are also discussed. 
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I. INTRODUCTION 

The prediction of protein-protein interaction (PPI) is 
one of the fundamental problems in computational 
biology as it can aid significantly in identifying the 
function of newly discovered proteins. Understanding 
protein-protein interactions is crucial for the investigation 
of intracellular signaling pathways, modeling of protein 
complex structures and for gaining insights into various 
biochemical processes. 
To solve this problem, many experimental techniques 
have been developed to predict the physical interactions 
which could lead to the identification of the functional 
relationships between proteins. These experimental 
techniques are however, very expensive, significantly 
time consuming and technically limited, resulting in a 
growing need for the development of computational 
tools that are capable of identifying PPIs. To this end, 
many impressive computational techniques have been 
developed. Each of these techniques has its own 
strengths and weaknesses, especially with regard to the 
sensitivity and specificity of the method. Some of the 
state-of-the-art techniques such as the Association 
Method (AM) [1], Maximum Likelihood Estimation (MLE) 
[2], Maximum Specificity Set Cover (MSSC) [3] and 

Domain-based Random Forest [4] have employed 
domain knowledge to predict PPI. The motivation behind 
this employment is that molecular interactions are 
typically mediated by a great variety of interacting 
domains. PIPE (Protein-Protein Interaction Prediction 
Engine) [5] was also developed and it is based on the 
assumption that some of the interactions between 
proteins are mediated by a finite number of short 
polypeptide sequences. These sequences are typically 
shorter than the classical domains, and are used 
repeatedly in different proteins and contexts within the 
cell. 
However, identifying domains or short polypeptide 
sequences is a long and computationally expensive 
process. 
These techniques are also not universal because the 
accuracy and reliability of these methods is dependent 
on the domain information of the protein partners. 

In this paper, we introduce a novel algorithm termed 
STRIKE which employs String Kernel to predict PPI. The 
string kernels (SK) approach has been shown to achieve 
good performance on text categorization tasks [6] and 
protein sequence classification [7]. The basic idea of this 
approach is to compare two protein sequences by 
looking at common subsequences of fixed length. The 
string kernel is built on the kernel method introduced by 
[8] and [9]. The kernel computes similarity scores 
between protein sequences without ever explicitly 
extracting the features. A subsequence is any ordered 
sequence of amino acids occurring in the protein 
sequence, where the amino acids are not necessarily 
contiguous. The subsequences are weighted by an 
exponentially decaying factor of their full length in the 
sequence, hence emphasizing those occurrences that 
are more contiguous. We understand that the 
subsequences’ similarity between two proteins may not 
necessarily indicate interaction, however, it is evidence 
that we can’t ignore. Subsequence similarity helps in 
inferring homology. Homologous sequences usually 
have the same or very similar structural relationships. 
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A drawback of this approach is observed when the 
level of similarity between the protein pairs is too low to 
pick up interaction. The reasonable explanation is that in 
the case of low sequence, there are always similar 
patterns of identical amino acid residues which could be 
seen in the two sequences. The pattern of sequence 
similarity reflects the similarity between experimentally 
determined structures of the respective proteins or at 
least corresponds to the known key elements of one 
such structure [10]. Structural evidence indicates that, 
interacting pairs of close homologs usually interact in the 
same way [11]. The Likelihood ratio in this study 
expresses the reliability of such genomic feature. In our 
case, there is no doubt that the SK method is a good 
indicator of homology between protein pairs. The 
intensive comparison between subsequences exists in 
protein pair may capture structural domain knowledge or 
typically subsequences which are shorter than the 
classical domains and could appear repeatedly in the 
protein pairs of interest. We are also encouraged by the 
success of a recently published work employing pairwise 
alignment as a way to extract meaningful futures to 
predict PPI. The PPI based on Pairwise Similarity (PPI-
PS) method consists of a representation of each protein 
sequence by a vector of pairwise similarities against 
large subsequences of amino acids created by a shifting 
window which passes over concatenated protein training 
sequences. Each coordinate of this vector is typically the 
E-value of the Smith-Waterman score [12]. One major 
drawback of the PPI-PS is that each protein is 
represented by computing the Smith-Waterman score 
against a large subsequence created by concatenating 
protein training sequences. However, comparing short 
sequences to very long ones will result in some 
potentially valuable alignments to be missed out. The 
SK however, tackles this weakness by capturing any 
match or mismatch which exists in the protein sequence 
of interest. 

In Section 2, we explain the parallel protein 
sequence decomposition and matching algorithm on 
parallel nodes. Section 3 formally presents the parallel 
sequence matching algorithm and its complexity 
analysis, and discusses the implementation of the 
application on multiple nodes. Section 4 reports HPC 
platforms used in our experiments. Section 5 presents 
the resulting performance analysis and results and. The 
paper concludes in Section 6. 

II. PARALLEL PROTEIN SEQUENCE MATCHING ALGORITHM 

We start explaining how the algorithm works by a 
simple example which compares the two short protein 
sequences s1=”lql” and s2=”lqal”, where there exists 
one string of characters in each sequence. For 
computational simplicity and to meet common memory 
capacities of modern computers, we set the length of 
substring (patterns to match) to 2. In other words, these 

sequences are implicitly transformed into feature 
vectors, where each feature vector is indexed by the 
substrings of length 2. Table I shows the decomposition 
of each of the two sequences into 2-character 
substrings. Each sequence is decomposed into all 
possible ordered (from left to right) combinations of 
characters included in the sequence such that the 2 
characters need not be consecutive. The first three 
(from the left) 2-character substrings represent the 
decomposition of the s1 sequence, while all 6 2-
character substrings represent the decomposition of the 
second sequence s2.  

TABLE I 

MAPPING TWO STRINGS “LQL” AND “LQAL” TO SIX DIMENSIONAL FEATURE 

SPACE 

 lq ll ql la qa al 

S1 = Ø(lql) λ2 λ3 λ2 0 0 0 

S2 = Ø(lqal) λ2 λ4 λ3 λ3 λ2 λ2 

 
When a 2-character substring appears in a sequence 

such that these 2 characters are consecutive in the 
sequence, the substring’s dom –degree of matching— in 
that sequence is represented by λ2, where λ is a decay 
factor. For instance, the substring “lq” fits this case in the 
first sequence. When these 2 characters are separated 
by another character (gap of 1), the substring’s dom is 
λ2+gap of 1= λ3. The substring “ll” fits this case in the first 
sequence. When the 2 characters in the appearing 
substring are further spaced by exactly gap characters, 
the dom is represented by λ2+gap. The doms for the 
substrings for the first sequence and all substrings for 
the second sequence are computed in that fashion as 
shown in Table I. When matching the 2 sequences, the 
2-character substrings to impact and increase the 
degree of matching must exactly appear in both 
sequences. 

To reflect the degree of matching between the s1 and 
s2 sequences, the un-normalized string kernel (SK) for 
the 2 sequences, k(lql,lqal) can clearly be computed as 
the dot product of the 2 rows of Table 1 containing the 
doms, i.e. λ4+λ7+λ5. Assuming that the decay factor λ is 
equal to 0.5, k(lql,lqal)=0.102. The higher the un-
normalized kernel the higher the indication of matching 
between the 2 sequences and the higher is the 
interaction. 

To parallelize this algorithm, we describe a highly 
parallel algorithm consisting of the following 3 steps: 

i. Decomposition 

ii. Sorting 

iii. Inner Product 

In the decomposition step, the amino acid sequences 
are allocated to processing nodes, one sequence per 
node. For instance let us assume that the SKs of the 4 
amino acid sequences “lyq,” “qyla”, “yqla” and “qla” are 
computed on four parallel computing nodes. The goal is 
to find mutual interaction between these 4 sequences. 
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The processing node allocation of the 4 sequences 
proceeds as shown in Fig. 1.a. 

In all nodes, the decomposition of each protein 
sequence proceeds in parallel and their execution times 
overlap in time. Each sequence is decomposed into 2-
amino acid substrings starting with adjacent amino acids 
as shown in Fig. 1.b. The “2” in “(ly 2)” refers to the 
power of the weighted decay factor (λ) (i.e. λ2) indicating 
no gap (i.e. 3

rd
 character) between the “l” and the “y.” 

Since the amino acids in the resulting substring are 
not necessarily required to be contiguous, the 
decomposition into 2-amino acid substrings with a non-
adjacent amino acid separated by another amino acid 
takes place as illustrated in Fig. 1.c. 

Again, the “3” in “(lq 3)” refers to the power of the 
weighted decay factor (λ) (i.e. λ3), meaning that the “l” 
and “q” are separated by another amino acid (“y”) in the 
sequence “lyq”. Finally the decomposition into 2-amino 
acid substrings composed of non-adjacent amino acid 
separated by 3 other amino acids takes place as shown 
in Fig. 1.d. 

As nodes 1 and 4 have shorter sequences to process 
in step 1, they will complete step 1 ahead of processing 
nodes 2 and 3. Thus nodes 1 and 4 can immediately 
proceed to step 2, while nodes 2 and 3 will proceed to 
step 2 immediately after completing step 1. 

In the second step of the parallel algorithm, the 2-
amino acid substrings generated in the first step are 
sorted alphabetically based on their 2-letter string 
content. Again each node sorts its strings alphabetically 
in parallel with the other nodes so the string sortings in 
all 4 nodes overlap in time. After step two completes, the 
4 processing nodes will have for content the sorted 
strings shown in Fig. 1.e. 

In the third step, the inner products are carried out on 
half 
(4/2=2) the nodes with the largest substring set 
cardinality. This choice is made to minimize the total 
inter-node communication time. In our example, nodes 2 
and 3 have the highest number of generated substrings. 
Each of these nodes maintains its 2-amino acid 
substrings and receives 3 amino acid strings generated 
by the node which is allocated the other sequence to 
match with its sequence. To simplify this example, let us 
say that our goal is to match the protein sequences “lyq” 
(node 1) and “qyla” (node 2) together, and the protein 
sequences “yqla” (node 3) and “qla” (node 4) together, 
in step 3, and not all the 4 sequences with each other. 
As a result, the following data communications will take 
place, as shown in Fig. 1.f. 

Node 1 sends its generated 2-amino acid substrings 
to node 2, and node 4 sends its generated 2-amino acid 
substrings to node 3. 

In our case of a message-passing system, the data 
communication takes place in the form of messages 

sent by the sender nodes (1 and 4) to the destinations 
nodes (2 and 3). 

In case of a shared memory system [13], processing 
nodes 2 and 3 read the 2-amino acid substring data 
generated by nodes 1 and 4 from shared memory. After 
the data is received or read by the destination nodes, 
the processing nodes 2 and 3 will hold the substrings 
shown in Fig. 1.f. nodes 1 and 4 need not remain active. 

 

 
Fig. 1.a  Allocation of sequences to processing cores (nodes)  

 

 

Fig. 1.b  Decomposition of each protein sequences into substrings of 

Length=2 and Distance=1 

 

 

Fig. 1.c  Decomposition into substrings of Distance=2 

 

 

Fig. 1.d  Decomposition into substrings of Distance=3 

 

Fig. 1.e  Content of the cores (nodes) is sorted substrings 
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Fig. 1.f  Inter-core (Inter-node) communication 

 

Fig. 1.g  Contents of each core (node) after inter-core (inter-node) 

communications 

 

Fig. 1.h  Inner products 

In our example, node 2 and 3 then start performing 
the inner products between their strings generated in 
step 2 and the received strings generated by the 
neighboring node are shown in Fig. 1.g. The inner 
product (α n) . (β m) succeeds when the 2 strings match 
i.e. α=β, producing the number n+m (representing λn+m). 
Otherwise if α is different from β, then it’s a mismatch 
(resulting in 0). Thus nodes 2 and 3 will simultaneously 
perform the following inner products. Note that node 2 
will take the product of ly (followed by lq, and yq, 
respectively) with the substrings in the other set. The 
results are presented by each node involved in the inner 
product step as follows: 

 
Node  Result 
2   0 
3   4,6,4: λ4+ λ6 + λ4 = 2 λ4+ λ6

 

 
On a processing node, matching two substrings 

starting with the same amino acid will speed up the 
kernel computation step. After matching a string with all 
other substrings starting with the same amino acid, the 
remaining strings in the second sequence can be 
skipped as the strings have been sorted in alphabetical 
order in the second step. For instance, referring to 
above results, after matching (ly 2) to (la 2), processing 

of the string (ly 2) stops as the remaining strings in the 
second set do not start with the amino acid l. This could 
be implemented by a simple indexing mechanism based 
on the starting amino acid of the substrings. In the 
absence of such mechanism, a string will have to be 
matched (i.e. its inner product taken) with all strings in 
the other set until a match is found or until all the strings 
in the other set have been exhausted. 

Step 3 can be repeated as many times as needed to 
match other protein sequences allocated to other 
processing nodes. For instance to match the lyq 
(allocated to processing node 1) and qla (allocated to 
processing node 4) sequences, processing node 4 
sends its 2-amino acid substrings generated in step 2 to 
processing node 1 which carries out the inner product 
step. Thus the parallel algorithm is capable of matching 
as many sequences in parallel as desired based on the 
availability of processing nodes. STRIKE is highly 
parallel and should achieve excellent performance 
scalability with increasing hardware resources. 

 
 

III. MPI PARALLEL IMPLEMENTATION ON HPC 

In our message-passing interface (MPI) implementation, 
we make two changes to the previous algorithm. For 
efficiency and proper indexing, we skip the sorting step 
and perform matching between all the 2-character 
substrings of the two protein sequences to match. 
Second, to improve the matching accuracy, we modify 
the SK to be the weighted inner product of the doms (α 
n) . (β m), i.e. from λn+m to λn+m x matrix(c1) x matrix(c2), 
where c1 and c2 are the first and second characters 
appearing in the matching substrings α=β=”c1 c2”, and 
matrix(c1) is a weight given to characters, such that 
alphabetical characters A, B, …C can be assigned 
different weightage helping direct the matching towards 
character-orientation. 

The parallel implementation consists of a main 
procedure set and the other from the testing set, and 
amino acid matrix, which reads the input protein 
sequences, one from the training launches parallel jobs 
which are assigned an equal number of sequences to 
match and which generate the pairs of amino acids and 
their inter-distances and compute the portion of the 
score matrix corresponding to the sequences assigned 
to these jobs. The matrix contains all amino acid weights 
corresponding to all characters in the protein sequence. 
Afterwards, control is passed back to the main 
procedure for printing the score matrix, and computing 
the execution time. The basic STRIKE procedure 
proceeds as follows. 
_____________________________________________
_____ 
 
Algorithm STRIKE 
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Data: - Files train.txt, test.txt containing the protein 
Sequences 

- File matrix.txt containing the weights of each 
amino acid in the training sequence 

- value of lambda, λ, 0.8 by default 
- NumThreads, number of parallel threads to 

launch 
 
Begin 

1. Read all amino acid sequences from their data files. 
The training sequences were read from a train.txt file, 
while the testing sequences were read from a test.txt 
file, while the matrix values assigning each of the amino 
acid characters a weight were read from a matrix.txt file. 
2. For each sequence in the training and testing sets, 
pair each amino acid with one subsequent amino acid, 
and store this pair of amino acids along with the 
distance between these 2 amino acids. 
3. Launch numnodes parallel jobs with an equal load of 
sequences each performing the following sequential 
steps 

3.1 Set the matching scorei,j corresponding to 
the 2 amino acid sequences i and j to 0. 

3.2 For any 2 amino acid sequences, match the 
pairs of amino acids of the first sequence i in the testing 
set with the pairs of amino acids of the second 
sequence j in the training set. 

3.3 If both amino acid pairs exactly match, then 

3.3.1 add their distances together, 
disti,j =disti + distj 

3.3.2 update scorei,j as follows 
scorei,j = scorei,j +λdisti,j x matrix(amino acidi) x 

matrix(amino acidj),  
where matrix(a) is the matrix value corresponding to 
amino acid letter “a.” 

4. When all jobs are done all pairs of sequences 
assigned to them, communicate to gather score in one 
node at least, then print the sequence scorei,j’s as a 
matrix of floating point numbers with row index i and 
column index j. Also, calculate and print the execution 
time. 
End 

__________________________________________________ 

 
Complexity-wise, step 1 is O(l1 x n1 + l2 x n2) where n1 

and n2 are the lengths of the protein sequences, and l1 

and l2 are the numbers of protein sequences in both 
testing and training sets. Step 2 is O(l1 x n1

2
 + l2 x n2

2). 
Step 3 is O(l1 x l2 x n1 x n2). Step 4 is O(l1 x l2). Therefore 
the entire algorithm is O(l1 x l2 x n1 x n2). 

IV. EXPERIMENTAL SETUP 

The application was implemented on two different 
high performance computing (HPC) platforms or 
clusters; the main difference between them is the 
scaling that we could reach to in both. The small-scale 

cluster has 10 PCs, one acts as the server, while the others are 

the clients. The server has 2 single core processors. Each 

processor is 3.4 GHz Intel Pentium 4 CPU, while the clients 

are classified as follows: 

i. Three clients of single core processor, each 

processor is 3.4 GHz Intel Pentium 4 CPU. 

ii. Six clients of two dual core processors, each 

processor is 2.4 GHz Intel Pentium Dual CPU. 

The cluster nodes are connected via a 3Com LAN switch 
10/100/1000 MHz and LAN cables of types CAT5 (which 

enable data rates up to 100 MHz) and CAT5e (which enable 

data rates up to 1000 MHz).  

We used gcc complier, version 3.4.6 20060404 (Red Hat 

3.4.6-8) which has a lot of optimized implementations for the 

different libraries on Linux families. 

For parallel experiments, we used MPICC compiler, 

version mpich-1.2.4 which is a freely available, portable 

implementation of MPI (Message Passing Interface) used to 

allow computers to communicate with each other. 

Our experiment is done on various number of nodes (i.e., 1, 
2, 4 and 6 nodes) using short-sequence set of data. 

Performance Analysis is done and explained in next section. 

V. RESULTS AND ANALYSIS 

The first factor to examine is the computation time; fig. 
2 shows only the computation speedup for STRIKE 
application (on the y-axis) for increasing number of 
nodes (on the x-axis). As expected the computation time 
is decreased in a semi-linear manner by increasing the 
number of nodes.  

Next factor to examine is the communication effect. 
Fig. 3 shows the increase in communication time for 
increasing number of nodes as the number of messages 
required to be sent and received among nodes are 
increases.  

TABLE III 

BIBLIOTECA ALEXANDRINA SUN MICROSYSTEM TECHNICAL DESCRIPTION 
 

Number of Nodes 128 eight-core compute nodes 

Processors/node 2 quad-core sockets per node, each is Intel 
Quad Xeon E5440 @ 2.83GHz 

Memory/node 8 GB memory per node, Total memory 1.05 
TBytes (132 * 8GB) 

Node-node 

interconnect 

Ethernet & 4x SDR Infiniband network for 
MPI 

4x SDR Infiniband network for I/O to the 

global Lustre filesystems 

pre- and post-

processing nodes 

6 management nodes, incl. two batch nodes 
for job submission w. 64GB RAM 

OS OS, Compute Node: RedHat Enterprise 
Linux 5 (RHEL5)  

OS, Front End & Service Nodes: RedHat 
Enterprise Linux 5 (RHEL5) 

 
Fig. 4 compares the relative communication time with 

the relative computation time for increasing number of 
nodes. The main observation is that the communication 
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overhead is negligible for lower number of nodes (i.e., 2 
and 4 nodes) because it is less than 7%, but it cannot be 
neglected when using higher number of nodes (6 nodes) 
as it exceeds 12%. 

VI. CONCLUSIONS 

STRIKE was shown to improve upon the existing 
state-of-the-art methods for Protein-protein interaction 
prediction. We described the parallelization of STRIKE 
and its MPI parallel implementation and performance 
enhancement, specific algorithm enhancements and 
compiler flag enhancements, on a heterogeneous 
cluster system. On small protein sequence sets, the 
execution time of a parallel implementation of this 
bioinformatics algorithm was reduced to about 6 times 
when increasing number of nodes from one compute 
node to 5 compute nodes. PC cluster with 6 nodes takes 
a few communication time and scales the computation 
time near to linear. A higher number of nodes will 
improve computation performance if we increased the 
size of the protein sequences, but this will also effect on 
the communication cost. Our implementation was shown 
to scale very well with increasing data size and number 
of nodes. 

 
 

 

Fig. 2  Computation speedup vs. number of nodes using short-sequence set on 

small-scale cluster  

 

Fig. 3  Increase in communication time vs. number of nodes using short-

sequence set on small-scale cluster 

 

Fig. 4  Application performance using short-sequence set w.r.t 1 node on 

small-scale cluster 
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